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Abstract-An analysis was performed of the rise characteristics of bubbles, which are also growing, in a 
pressure Iield which is decreasing exponentially with time. The bubble rise and growth occur due to flash 
evaporation caused by reducing the pressure in the vapor space above a pool of liquid. Basset’s bubble 
momentum equation was modified to include the effects of the generated pressure wave, and to include 
bubble growth. The solution of the differential equation was obtained for three different expressions for 
the bubbb drag, for pressure ratios of 0.1-0.9, Jakob numbers of 5-l 13, Weber numbers of O-0.16, and 
time constants of the pressure transient down to 5 ms. Results indicate &hat different bubble drag expressions 
give bubble velocities which differ by as much as 100%. The pressure term introduced by the authors has 
a negligible effect in the range of parameters considered here but becomes significant for very rapid 
depressurization rates, and the initial velocity of the bubble has little effect on the bubble’s subsequent rise 

velocity. 

1. INTRODUCTION 

FLASH evaporation occurs when the vapor pressure 
above a liquid is reduced to a level which is below the 
saturation pressure corresponding to the temperature 
of the liquid. Typically, most of the vapor is liberated 
through bubbles released from the liquid after a pro- 
cess of nucleation, growth and rise to the liquid-vapor 
interface. Typically, the pressure reduction process is 
transient, where often the initial pressure drop is large 
and it decays in time to a new state of equilibrium. 
Such a process is common to many applications in 
which flash evaporation plays an important role, such 
as distillation, vacuum freezing, and loss of coolant 
accidents (LOCA) in nuclear power plants. The pri- 
mary objective of this study is to examine bubble 
translation accompanied by growth inside a liquid 
which is exposed to a pressure field decaying with 
time. 

Motion of bubbles and liquid droplets in fluids has 
been studied extensively in the past (cf. ref. [ 11). Good 
results were obtained, particularly for the limiting 
cases of potential flow and for the steady-state ter- 
minal velocity. A vast amount of literature exists on 
the growth of bubbles. A number of researchers have 
studied the problem of combined rise and growth of 
bubbles, which is the objective of this study, but with 
the restricting assumptions of heat transfer controlled 
growth with rise induced purely by buoyancy (cf. refs. 
[2-4& The present analysis removes these two restric- 

tions by: (1) considering the entire regime of bubble 
growth, including the initial inertia-controlled growth 
period, by using the results of Mikie et al. [S] ; and (2) 
by directly incorporating the effects of the transient 
pressure reduction term which drives the flash evap- 
oration. The analysis is thus more general and covers 
bubble rise and growth not only in steady-state boiling 
but also in the transient process of flash evaporation. 

2. PROBLEM FORMULATION 

This section describes the problem fo~ulation for 
the force balance on a vapor bubble which grows 
due to an imposed transient pressure reduction in the 
vapor space, and translates upward due to buoyancy 
and this pressure reduction. A force balance over a 
horizontal cross-section of the bubble is used in this 
study to determine the rise velocity for a given growth 
rate. 

The major assumptions used in deriving the govern- 
ing equation are : 

1. The bubble nucleus already exists when flashing 
is initiated, most likely on a present micro-bubble (cf. 
ref. [6]). 

2. The bubble is spherical. 
3. The bubble rises vertically in a fluid of infinite 

expanse. 
4. Growth is governed by the Mikic, Rohsenow and 

Griffith (MRG) [5] solution which accounts for the 
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___ 

NOMENCLATURE 

C’,, drag coefficient t’ dimensionless time in MRG expression 

c, specific heat of the liquid j-0 initial temperature of the pool 
d<, effective diameter of the bubble T \.I, saturation tcmperaturc inside the bubble 

Cl gravitational acceleration T, liquid temperature far away from the 
I?,, tatcnt hcdt of vaporization bubble 
lit Jakob number, ~T~~,~~I,~ I!, liquid velocity far from the bubhic 
k thermal conductivity of liquid IV<> Weher number, ZRC’ p, TV 
MO Morton number, .cl~~/pn’ Y. 1. spatial coordinates. 

PI final pressure in the vapor space 

PI initial vapor space pressure 

P” pressure ratlo. pI/p3 Greek symbols 
PC Peclet number, 2U, R,,jsc, thermal diffusivity 
R bubble radius at any time t ; time constant of the depressurization 
R+ dimensionless bubble radius in MRG AT superheat in the liquid 

expression A’ viscosity 

R,, initial radius of the bubble 52 horizontal cross-section radius of the 
Rc Reynolds number, 2RU, !v, bubble 
I time 0 density 
f ii traversal time for the pressure wave fT surface tension. 

successive inertial and thermal regimes during the 
bubble growth process. 

5. The liquid is incompressible. 
6. The pressure in the vapor space is an cxpo- 

nentially decaying function of time with a known, 
arbitrary, time constant. 

7. The effect of non-condensable gases in the liquid 
is negligible. 

The equation of motion for a growing bubble was 

written as a force balance over its cross-section. A 
schematic of the bubble translation in the vertical 
direction is shown in Fig. 1. This force balance can be 
derived from the basic equations of fluid mechanics 

starting with the Navier-Stokes equations (as dcvel- 
oped for bubbles in non-flashing liquids by Basset 
[7]). Since the translation process examined here is 
transient, the net force was equated to the rate of 
change of vapor and liquid momentum. The resulting 
equation for the translation velocity, U, , in this flash- 
ing case, followed by a brief explanation of the terms. 
was written as : 

-4R”\:(~,fl,) df,. (1) 

The first term represents vapor inertia, and the Since (I,/(>~ % 1000 for the flashing of water fol 

second term on the left-hand side is the contribution typical temperatures and pressures, the contribution of 

of the added mass due to liquid displacement. The vapor momentum on the left-hand side of equation (I 1 

first term on the right-hand side is the buoyancy force, is negligible in comparison to the liquid momentum. 

and the second term is the effect of the pressure wave Neglecting the vapor moment~lm and the history term 

traveling down from the vapor space due to the 
imposed pressure reduction. The modeling of this 
pressure term was carried out using an approximation 
for the complex interactions occurring during the 
pressure wave travel, a description of which is pro- 
vided later in this section. The third term on the right- 
hand side is the drag force contribution which arises 
due to the frictional stresses. The drag coefficient used 
in this study is different from the conventionally used 
expression for drag because the change in bubble size 
with time is taken into account in the modeling. The 
last term represents a cumulative effect of past accel- 
eration of the bubble weighted by the time elapsed, 
and is referred to in the literature as the ‘Basset history 
term’. This term arises due to the dissipation of vor- 
ticity generated at the bubble surface into the liquid. 
It represents a higher order effect of the transient, and 
is usually neglected in practical situations. However. 
as pointed out in this paper, large depressurizations 
found in flash evaporation could lead to acceleration 
levels that make the contribution of the history term 
comparable to the other terms. An evaluation of its 

magnitude is carried out in the Appendix. 
The driving forces are those of buoyancy and the 

applied pressure reduction, which tend to propel the 
bubble upward, the restraining forces being those of 
liquid inertia, added mass due to displacement of the 
liquid, unsteady drag force. and the Basset history 
term (which accounts for the prior acceleration his- 

tory of the bubble). 
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FIG. 1. Schematic of bubble translation and pressure wave propagation. 

(such an assumption is plausible for the case of small 
pressure reductions encountered in flashing-which 
in turn leads to a small contribution to the integral in 
equation (I) ; this assumption is justified a posteriori 
using the calculated rise velocity-see the Appendix), 
equation (1) becomes 

3dp 1 3 
2 drI,p++CC”2=0. (2) --- 

I 

Next, models for the growth, drag and pressure terms 
were inserted into the above equation to obtain a 
single equation for the rise velocity as a function of 
time. 

We used the MikiC et a2. 151 expression for the 
growth history of the bubble. This equation is valid for 
both inertial (initial) and thermally controlled (later) 
growth regimes, and is therefore well suited for the 
early stages of the growth process. For the conditions 
considered here, R/R0 typically reaches a m~imum 
of 50 

R+ -_ f[(t+ + 1)3’2-(f+)3/*- 1] (3) 

where 

and PI CAT 
Ju = - L-- 

PY hg, ’ 

In this bubble translation analysis, the unsteady 
nature of the drag coefficient was modeled using a 
quasi-steady approximation. Drag expressions which 
have been derived in the literature for constant size 
bubbles are used here, but the radius, and hence, the 
drag coefficient, is considered variable in the com- 
putations. A variety ofexpressions for the appropriate 
drag coefficient were tried out. One of the expressions 
is taken from the list compiled by Clift et al. [I] (shown 
in Table 1) for the range of translation Reynolds 
number Re (=2RU,/v,) corresponding to this inves- 
tigation. It was found that the translation process is 
quite sensitive to the value of the drag coefficient, 
and widely differing results can be obtained by using 
different available methods for its determination. A 
list of the drag expressions used in this study is shown 
in Table 1. 

The drag coefficient is also affected by the Morton 
number. Miyahara and Takahashi [S] have found that 
the drag coefficient for bubbles is constant for Rey- 
nolds numbers (based on equivalent diameter) larger 
than 10. They also found a 0.3 power dependence 
of C, on the Morton number for small Reynolds 
numbers, i.e. 



1756 S. GOPALAKKISHNA and N. LIOR 

Table I. Drag coefficients for spherical bubbles 

. Moore [IS] (fluid spheres) 

cD=;e F ,221 
.J’(W 

+(q/& ‘6) 

1 
(4) 

o Peebles and Garber terminal velocity expression [ 131 (rigid 
spheres) 

8 Fluid sphere drag 111 

Rc C,, 
0.1 191.8 
I 18.3 
5 4.69 

10 2.64 
20 1.40 
30 1.07 
40 0.83 
50 0.723 

100 0.405 
200 0.266 
300 0.204 
400 0.165 
500 0.125 

c;, = 0.03(Re’)‘~~(Mo’)0.J 

where 

and c1 = major axis diameter of the ellipsoidal bubble. 
They observed a change in the behavior of C,, with 
Re at a value of Mrt’ = 10 -7. For our calculations. 
,440’ is always below IO- ’ and thus the behavior of 
the drag coefficient with Re as shown in Table I is 
valid. 

The prcssurc term in equation (1) represents the 
effect of a depressurization (expansion) wave traveling 
down the liquid from the vapor space as a conse- 
quence of the imposed pressure reduction. Obser- 
vations have shown [9, IO] that bubbles are accel- 
erated upward soon after the pressure reduction is 
imposed, but then their upward motion settles down 
to a relatively quiescent rise pattern as they approach 
the surface. Due to the large pressure reduction rates 
that are possible in situations where rapid depres- 
surization is used, such a pressure drop could exert 
an impulse propelling the bubble upward. This effect 
on bubble rise complements that due to buoyancy. 

The strength of this expansion wave depends on the 
depth at which bubble nucleation occurs (the depres- 
surization effect is suppressed due to the hydrostatic 
pressure) and on the rate of depressurization. The 
duration of the effect is determined by the time of 
passage of the wave moving vertically across the 
bubble surface. The excess pressure which causes 
bubble motion in the upward direction (superimposed 
on the gravity field}, acts over progressively increas- 
ing areas of cross-section until the wave reaches the 
bubble equator, then it acts over decreasing areas. 

As shown in Fig. I, the pressure difference dp acts OVCI 
the radius c2, which is a function of bubble radius and 
time. The net contribution to the pressure impulse is 
dp x rrt$, and an integral of this contribution over 
time represents the total pressure force. As can be 
seen from the functional form of the imposed 
pressure reduction, the contribution becomes pro- 
gressively smaller, and the initial impulse is the 
largest contributing factor. 

A limiting case of this entire phenomenon of the 
pressure wave travel-that of the total pressure drop 
acting over the maximum area of TCR* for the period 
of time 1, it takes for the wave to travel across the 
bubble- was considered in this study. 

The pressure reduction imposed externally in the 
vapor space was modeled as an exponential decay 
with time (cf. ref. [I I]) 

p = I)l.i_(Pi -p,) e @. fh! 

The growth of this bubble is strongly affected by the 
pressure reduction, and this is accounted for by using 
the Jakob number (which is proportional to the 
imposed superheat) in the growth expression. 

For the largest depressurization rates encountered 
in conditions of LOCA, with p = 1000 s I, the pres- 
sure term is approximately 27 m s ‘, comparable in 
magnitude to the constant buoyancy term. However. 
the high contribution acts only for the duration of 
time that the pressure reduction wave takes to cross 

the bubble. 
The equations for the drag coefficient, pressure 

reduction and growth were inserted into equation (2), 
and this results in a non-linear ordinary differential 
equation for the rise velocity U, as a function of time : 

dU, 9 A’ 
& +21/‘, ‘i 

(~‘fl)‘“--f+‘z 
B_ (lt + fj?‘2_t+ i :-__ 1 

+ 

where A and 3 were defined in equation (3). and 
equation (5) was used here for the drag coefficient. 

The initial velocity for the integration of equation 
(7) was taken to be a finite, small non-zero number 
(typically 0.01 m s ‘). Since the magnitude of this 
initial bubble velocity depends on the circumstance of 
bubble nucleation and on the surrounding flow field 
at that time and place, various values of the initial 
velocity were examined to establish the dependence of 
the solution on the initial conditions. 

To compare the results obtained from the above 
integration with oft-employed models which assume 
potential flow for the calculation of terminal rise vel- 
ocity (cf. ref. [12]) for a given growth rate, the 
expression 
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80 r Table 2. Range of parameters used in this study 

Quantity Minimum Maximum 

Pressure ratio, p* 0.1 1.0 
Jakob number, Ja 8.5 113 
Weber number, We 0 0.16 
Radius, R (mm) 0.5 5 
Time constant, p- I (ms) 5 
B (s-l) 0 20; 

was evaluated numerically for the radius growth curve 
given by the MRG expression. The range of par- 
ameters used in this study is shown in Table 2. 

3. SOLUTION PROCEDURE 

Equation (7) was integrated numerically starting 
from t = O+ using a locally fifth-order Runge-Kutta 
scheme. The integration was carried out for various 
pressure reductions in the vapor space, as charac- 
terized by the values of p* and /I in the expression 

p-j+ = (pi -pr) eeP’ =p,(l -p*) eeB’. (9) 

Here, (pi-p,-) represents the overall imposed pressure 
drop. 

The integration is carried out until the combination 
of the velocity U, and the bubble radius R result in 
a Weber number which is greater than the limit speci- 
fied for the sphericity condition to be valid 
(We x 0.16). Beyond this time limit, the bubble shape 
(spheroidal or ellipsoidal) will influence the rise 
velocity, and needs to be determined simultaneously. 

During the integration, care was taken to maintain 
a time step compatible with the assumption of a pres- 
sure wave impacting on the bubble surface. In other 
words, the time step used in the calculations must be 
of the same order as the time spent by the wave in 
traversing the bubble surface, so that the process can 
be modeled with sufficient accuracy. A time step of 1 
ns was used in all the computations, so that the esti- 
mated wave travel time ( !Z 7.8 x IO-’ s) can be fol- 
lowed closely in most of the cases of interest. As the 
bubble radius increases, this time step describes the 
phenomenon sufficiently well. 

In addition to computation of the bubble velocity, 
the magnitude of each of the terms contributing to 
the momentum equation was also examined. 

4. RESULTS AND DISCUSSION 

Figure 2 shows the rise velocity as a function of 
time for different levels of superheat imposed on the 
liquid, and for three different expressions for the drag 
coefficient (C,). As shown in Fig. 2, the results depend 
strongly on the drag coefficient expression employed. 

The potential flow solution (equation (6)), gen- 

60 

40 

20 

0 
0 0.02 0.04 0.06 0.00 

WlR,2 

FIG. 2. Bubble rise velocity history for different rise velocities 
as a function of time for various expressions 
of the drag coefficients taken from Table 1, and for different 

pressure ratios: fi = 200 SC’, U,(O) = 0.01 m SK’. 

erated for comparison with limiting cases, shows that 
the translation velocity increases linearly with time. 
The usage of C, from Peebles and Garber [ 131 results 
in the rise velocity going through a maximum, as 
shown in Fig. 2. The maximal rise velocity decreases 
as the overall pressure reduction increases (cor- 
responding to lower p*), because the drag as well as 
the growth terms impede the motion and therefore 
cause deceleration of the bubble (see equation (7) 
for the sign of each of the terms). For small overall 
pressure drops (p* = 0.9), the curve is almost coinci- 
dental with the potential flow curve for the rise of a 
bubble in water. As the imposed pressure drop 
increases, the growth term contributes more and more 
to the deceleration, leading to a maximum in the rise 
velocity. 

The observed trend of lower velocity for higher p* 
(or Jakob number) is confirmed by the results of Pinto 
and Davis [3], who obtained maximum rise velocities 
of 25 cm s- ’ for a Jakob number of 5, whereas the 
maximum velocity reached only about 12 cm s- ’ for 
Ju = 50 (Fig. 3). As also seen in the comparison of 
individual contributions to the acceleration (Fig. 4). 
the drag term exerts a large influence and, eventually, 
the velocity decreases as a function of time. Also seen 
in Fig. 2 is the fact that increasing pressure drops 
cause the velocity maximum to occur sooner. 

The individual contributions of buoyancy, pressure 
reduction, drag and growth terms in the force balance 
equation (equation (7)) are examined further below 
for the various drag expressions used in the calcu- 
lations. The five terms from equation (7) are labeled 
as Net Acceleration, Growth, Buoyancy, Drag, and 
Pressure, respectively, in Figs. 4 and 5, for p* = 0.9 
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FIG. 3. Comparison of results with Pinto and Davis [3]. 

and [j = 200 s ‘. These figures can be examined in 
conjunction with Fig. 2, which describes the rise vel- 

ocity. When using the Peebles and Garber drag 
expression, the maximum velocity attained around 
T = 0.025 is seen to be the result of an exact balance 
between buoyancy on the one hand and growth and 
drag on the other. The growth term decreases from 
the initial high value to almost zero for large times, 

because of the decrease in growth rate. The gravity 
(or buoyancy) term remains practically constant for 
the conditions specified, with only minor changes 

caused by variations in vapor density. The graphs 
shown here are typical, and a similar trend is followed 
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FE. 4. Individual contributions to the force balance: 
p* = 0.9, /< = 200 s ‘, U, (0) = 0.01 m SK’. Peebles and 

Garber drag. 
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FIG. 5. Individual contributions to the force balance: 
p* = 0.9. /J = 20Os~‘, U, (0) = 0.01 m s ‘, Dragcoefficients 

based on Clift et ul. [l]. shown in Table I. 

for other pressure reductions which have been 
examined in this study. 

The pressure term was observed to be quite small, 
relatively negligible in the entire range of parameters 
p* and /J’ investigated here. Larger and faster dcpres- 
surizations can occur in situations such as nuclear 
reactor loss of coolant accidents (cf. ref. [14]). Using 
the drag coefficient expression proposed by Moore 
[I 51, the pressure term corresponding to LOCA con- 
ditions (a = 1000 s ‘) was found to be about 20% of 
the buoyancy term at the initial instant of time not a 
negligible quantity. 

The bubble velocity calculations based on drag 
coefficients developed for fluid spheres [l]. sum- 
marized in Table 1, are also shown in Fig. 2 and arc 
probably more representative of the actual situation 
because they are a function of the Reynolds number 
and were calculated more accurately using weighted 

residual methods and boundary layer theory for a 
range of Reynolds numbers. The trend shown is such 
that larger depressurizations now cause higher vel- 
ocities of translation. An examination of the con- 
tribution of each term (Figs. 4 and 5) reveals the 
source of this behavior. The growth term obviously 
increases for the case of larger driving pressure 
reduction, and the influence of drag is felt at later 
times as a reduction in the slope of the curve. Since 
the coefficient of drag multiplies U: ‘R in the force 
balance (equation (7)). a larger bubble size results in 
a smaller drag contribution to the overall deceleration 
of the bubble. This is in contrast to the Peeblcs and 
Garber [13] drag expression, which predicts an R’ 
dependence of CD. The drag expression from Clift el 
uI. [I] predicts the lowest bubble rise velocities, and 
we believe that this is the most appropriate choice Tot 
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FIG. 6. Effect of initial velocity on bubble rise; Peebles and 
Garber drag, p* = 0.9, /? = 200 s-- I. 

the case of flash evaporation studied in this paper. 
In this connection, it should be mentioned that the 
expressions for drag used by Peebles and Garber [ 131 
are for rigid spheres, whereas the other expressions 
are for fluid spheres. Surfactants are often present in 
the liquid and they accumulate on the surface of the 
bubble, which causes it to behave as a rigid sphere as 
far as fluid drag is concerned. During the early stages 
of fo~ation and growth, the assumption of a fluid 
sphere is more appropriate, as demonstrated here. 

This behavior was also confirmed by the use of 
another drag expression, developed from potential 
flow theory, by Moore [ 151. As expected, the rise curve 
is linear, resembling the potential flow curve. For 
higher pressure reductions, the curve shifts upward, 
and due to zero skin friction drag, the bubble accel- 
erates upward. There is no deceleration because the 
contribution of the growth term remains at a com- 
parable level to that of buoyancy. Moore’s expression 
obviously tends to overpredict the bubble rise velocity. 

Figure 6 compares different initial velocity assump- 
tions on the rise history for a given depressurization 
level. The effect of initial velocity is seen to be minimal, 
and a large initial value (such as 1 m s- ‘) settles down 
rapidly to the predicted rise curve as shown. Such a 
situation arises because the drag term remains small, 
whereas the growth term is quite large initially. The 
net acceleration is a large, negative number because 
of its annihilation by the growth term alone. The drag 
term exerts an influence comparable to the others, as 
shown in Figs. 4 and 5. This shows that the driving 
forces are too great for the initial velocity to have an 
impact on the rise characteristics. 

Varying the time constant of the depressurization 
(for p* = 0.9), it was found that there is practically 
no difference in the rise pattern for three different 
rates correspondjng to fi = 0, fi = 20 s- ’ . and ,8 = 200 

s - ‘, This is a direct consequence of the relatively small 
value of the pressure term in the present range of 
parameters, as discussed above. 

5. CONCLUSIONS 

1. The Basset equation was rnodi~~d to include the 
effect of the pressure wave generated by depres- 
surization on bubble rise velocity. 

2. Using the MikiC, Rohsenow and Griffith equa- 
tion for bubble growth [5], and a number of available 
expressions for drag coefficient for spheres, this modi- 
fied Basset equation was solved to determine the tran- 
sient bubble rise velocity during flash evaporation 
caused by transient depressurization. 

3. The contributions of aif the driving forces acting 
on the vapor bubble growing and translating in the 
time-varying pressure field were also examined, 
including the extent of influence of the pressure 
reduction force introduced in this study. 

4. The effect of the imposed superheat is quite 
important in dete~ining the rise velocity charac- 
teristics. An almost linear increase in velocity was 
obtained for a high overall pressure drop (p* = 0.1). 
As the imposed pressure reduction was decreased 
(p* = 0.9), the retardation sets in early, and only 20% 
of the velocity reached for p* = 0.1 is reached in this 
case for the case of drag coefficients from Clift et al. 

111. 
5. The effect of the newly introduced pressure term 

is short-lived and practically insignificant in the range 
of parameters investigated here, contributing only 
about 0.1% For the case of flash evaporation at normal 
tem~ratures and pressure for the flashing of water, 
but becomes more significant as the magnitude and 
rate of depressurization increase. 

6. The initial bubble rise velocity (post-nucleation) 
plays only a marginal role in the eventual rise process, 
because its effects are largely cancetied by the large 
influence of the growth and drag processes as soon as 
the bubble starts moving. 

7. The nature of the drag expression in the unsteady 
case is very influential in determining the resulting rise 
velocity. Different drag expressions result in up to a 
100% difference in rise velocity depending upon the 
range of application. 
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For the growth defined by R 7: I’ ‘. we get 

Therefore 

(A2) 

(A3) 

The history term now becomes 

= I.265 x l@‘Jr where t is in seconds. 

For the times considered here, i.e. t 2 0.1 s, the history term 
contributes approximately 0.0004 N. 

In comparison to the above estimate for the history term, 
the typical contribution of the other terms is 

Gravity 

:nK”&--p,) = 0.00514 N. 

This term is therefore at least one order of magnitude higher 
at the largest radius (and the highest acceleration) than the 
history term. 

APPENDIX: EVALUATION OF THE ORDER OF Drag 

MAGNITUDE OF THE BASSET HISTORY 
INTEGRAL Co ;pr U; ‘n R’ = 0.00499 N 

The Basset history term can be written as 

(for C,, = I : a high value, see Clift ct al. [I]. Table I). For 

F,, = 4R’J(xp,p,) d,,. (Al) the present calculations, therefore, the effect of the history 
term can be safely neglected. 

ANALYSE DE LA TRANSLATION DES BULLES PENDANT L’EVAPORATION 
BRUSQUE 

RBsum&--On analyse les caracteristiques de la montee des bulles, lesquelles grossissent, dans ua champ de 
pression qui diminue exponentiellement dam le temps, ce qui mod&se l’itvaporation brusque par reduction 
de pression dam i’espace de vapeur au-dessus du liquide. L’iquation du momentum de la bulle selon Basset 
est mod&e pour indure les effets de l’onde de pression g&r&e, ainsi que la croissance des bulles. La 
solution de l’equation est obtenue pour trois expressions differentes de la train& de Ia buile, pour des 
rapports de pression de 0, I $0,9, des nombres de Jakob de 5 a 113, des nombres de Weber de 0 a 0,16 et 
des constantes de temps allant jusqu’a 5 ms pour la pression. Les r&Rats indiquent que des expressions 
differentes de la trainee de bulle donnent des vitesses qui peuvent differer de 100%. Le terme de pression 
introduit par les auteurs a un effet negligeable dans le domaine des parametres consid6rt ici mais il devient 
stgniticatif pour les depressurisations rapides; et la vitesse initiale de la bulle a un effet tres faible sur la 

croissancc tdtcricurc de la vitcssc. 
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UNTERSUCHUNG DER BLASENBEWEGUNG BEI DER 
ENTSPANNUNGSVERDAMPFUNG 

Zusammenfassung-Das Aufstiegsverhdhen von wachsenden Dampfblasen in einem zeitlich exponentiell 
abfallenden Druckfeld wird untersucht. Blasenaufstieg und -wachstum werden durch Entspan- 
nungsverdampfung erzeugt, indem der Druck im Dampfraum iiber einer Fhissigkeit abgesenkt wird. 
Die Blasenimpulsgleichung nach Basset wird modifiziert, urn den Effekt der durch die Druckabsenkung 
erzeugten Druckwelle einzubeziehen. Die Differentialgleichung wird fiir folgende Bedingungen gel&t : drei 
unter~hiedliche Ausdriicke fur den Str~mungswiderstand der Blasen, Druckverhlltnisse von 0.1 bis 0,9, 
Jakob-Zahien von 5 bis 113, Weber-Zahlen von 0 bis 0.16 und Zeitkonstanten der Drucktransienten bis 
hinunter zu 5 ms. Die Ergebnisse zeigen, da6 unterschi~iiche Fo~ulierungen fur den Stro- 
mun~widerstand der Blasen Unter~hi~e in der Blasenaufstiegsgeschwindigkeit bis zu 100% verursachen. 
Der von den Autoren eingefiihrte Druckterm hat im untersuchten Wertebereich der verschiedenen Pa- 
rameter einen vemachhissigbaren EinfluD, wird aber wichtig fiir sehr hohe Druckabsenkungsgeschwin- 
digkeiten. Die Anfangsgeschwindigkeit der Blasen beeinfluBt die sich splter einstellende Aufstiegs- 

geschwindigkeit der Blasen wenig. 

AHAJTH3 HOCTYHATEJIbHOL-0 ABHXEHH~ HY3bIPbKOB B IIPOqECCE 
HEYCTAHOBHBIIIEl-OCI MCfiAPEHHR I-IPM BCIIbIIIIKE 

AHISW~AH~~~H~Y~OTCS XapaPTepHcmcH nomehsa pacrywix ny3rdpbKoe B none nasnesHii,3~c- 
~oH~~~~0 ~e~a~~eM~n~ B~~CM.~o~M 5i porn ny3bZpbKOB npoiicxogm 3ac9e-T pIma- 

~~np~ec~Ke,noropoeo6y~o~~o~e~~e~se~na~e~rB~~MenapaHa~~~b~ 

~paSHe~eEi~~ffK~~~~~~~~~bKOBMO~~~HpyeTcIIC~~OM~~TO~fpopMH- 

pylorseiicaeon~~nas~e~~pocrany3bapbnoe.Ifonyse~opeureinre3T0r0~~~~9HaRbHOTOypa~- 

iiemfs np~ Tpex pa3nmiba irafrpsmmwx mff conpoTHaneHmf ny3bipbxo8, OmiomeHHfix mrmem& 

@l-0,9, wznax IIao6a 5-113,v~wrax Be&pa O-416, a Tarrrenowonmbrxqebtem, xapan-reprqrotqrrx 
tKiJleHEe LlaBJTeHHff,CQCTaMSIOIlUXxXlO SMC.Pe3ynbTaTblnOna3blBaMT,9TO~qHyeB~IpaYeHHR &II!4 

conpoTHKneHHn Uy3brpbKOB &UoT CnOpocTK ny3bIpbKOB,0~JI~YilIO~eCll Ha 100%. %#~KT nnenemoro 

aBTopabm cnaraeMor0, co&tepKcaxuero KaRKeHHe, npene6peKnn+so M~K B uccnenyehfoM nrianaaoue HaMe- 
KeIiEK lIapaMeTpOB,HO CTaHOBaPCX C~ecri3eHHblM IlpH O'IeHb 6wrpo~ CtipoCe p@BneHHx, B TO spew 

KBK HaWJIbH~CKOpOCTblly3bQb~acna6oBJIHJIeTHa CKOpocTbfXOMWli3~)‘IO~t3~O nomrda. 


